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NEW INSIGHTS INTO LARGE EDDY SIMULATION

1. Introduction

This paper considers an approach to Large Eddy Simulation (LES) using built-in sub-

grid turbulence models which appear naturally from the monotone Computational Fluid

Dynamics (CFD) algorithms used to simulate the resolved components of the flow. This

approach differs somewhat from the conventional LES approaches reviewed, for example,

by Reynolds [11, although much of the terminology and goals are the same: "to compute the

three-dimensional time-dependent details of the largest scales of motion (those responsible

for the primary transport) using a simple model for the smaller scales. LES is intended to

be useful in the study of turbulence physics at high Re, in the development of turbulence

models, and for predicting flows of technical interest in demanding complex situations

where simpler model approaches (e.g. Reynolds stress transport) are inadequate."

The differences between this Monotone Integrated Large Eddy Simulation (MILES)

approach and conventional LES approaches are quite basic, however, and arise from how

certain necessary tradeoffs are made and how best to optimize the overall performance of

the CFD model. Evidence supporting this MILES viewpoint of LES subgrid modelling

is based on the successful use of Flux-Corrected Transport (FCT) and other monotone

algorithms for solving time-dependent CFD problems with steep gradients and turbulence

and on certain common-sense considerations in making necessary numerical tradeoffs. It

is only in the last several years, however, that a connection has been drawn between

the grid-scale behavior of these algorithms and the need for and required properties of a

subgrid-stress model to represent the unresolved "turbulent" scales.

Section 2 reviews the Basic Concepts and Approaches in Large-Eddy Simulation and

includes a discussion of the desired properties of a good subgrid turbulence model. Section 3

presents a discussion of Computational Fluid Dynamics Requirements for Direct Numerical

Simulation and Large Eddy Simulation, highlighting the close interaction between the grid-

scale errors in the underlying CFD algorithm and the subgrid turbulence model. Section

4 is devoted to a general discussion of Evidence That Monotone Algorithms Have Built-In

Subgrid Models. Some of the general aspects of the MILES viewpoint have been prerented

earlier [2-41. Attention in this paper is centered around FCT algorithms because of our

Manuscript approved February 3, 1992. 1



experience using them at NRL, though the ideas and results should also apply to other

monotone and effectively monotone CFD algorithms. Successes over the last two decades

using FCT with no explicit turbulence model to simulate flows which are expected to be

turbulent at small scales have been surprising. This body of direct and indirect evidence

is also discussed in Section 4. In an effort to understand why these computer models are

working as well as they are, we have studied what these models actually do to complex

fluid flows which may be called turbulent and atterpted to understand the intrinsically

imprecise notions involved in LES.

Calibrating Flux-Corrected Transport for Large Eddy Simulation is considered in

Section 5. Truly definitive numerical tests of LES are still difficult to define. Because

of the limited range of resolved time and space scales available to direct simulation, the

masking influence of physical viscosity is very strong in LES runs for which corresponding

Navier-Stokes solutions are available. The dissipation provided by the viscosity reduces

the cascade of small-scale structure to unresolved scales in the LES model being tested.

Conversely, when a higher-resolution LES solution is used as the basis for determining

convergence of another LES simulation, the short wavelengths in the inertial range are

not strongly damped by the physics but there is always doubt as to whether the higher-

resolution calculation is "correct." Further, analyzing theoretically exactly how given

CFD algorithms will actually fit together with particular subgrid turbulence models is not

practical and, as pointed out by Frisch [5], probably is not even possible.

Section 6 presents a qualitative way to understand these general aspects of LES

through A Hydrodynamic Analogy for Turbulence Modelling. The cascade of energy from

macroscopic scales through the inertial range of Kolmogorov to dissipation by viscosity is

likened to water being poured into the center of a flat table and flowing smoothly off the

edges. This analogy makes the interplay of the various scales in turbulence and cascade

easier to interpret and leads naturally into the Summary and Discussion of Section 7.

The objective of this paper is to organize, quantify and at least partially substantiate

the strong evidence suggesting that monotone convection algorithms, designed to satisfy

the physical requirements of positivity and causality, have n minimal nonlinez LES fitcr

and matching subgrid "turbulence" model already built in. The positivity and causality
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properties of FCT and other monotone algorithms, properties not present in most com-

monly used convection algorithms, appear to ensure efficient transfer of the smallest grid-

scale motions, generated by computationally resolved fluid dynamic mechanisms, smoothly

off the resolved grid. This occurs with minimal contamination of the well-resolved scales.

This conclusion, and the reasoning and computations which support it, are explained in

the sections to follow.

2. Basic Concepts and Approaches in Large Eddy Simulation

Recent discussions of the usual approaches to LES can be found, for example, in articles by

Reynolds [1], Hussaini and Speziale [6], Wyngard [7], Rogallo and Moin [8], and Speziale

[9]. These authors reference earlier developments and concepts introduced in a number

of papers including Smagorinsky [10], Lilly [11], Deardorff [12], Leonard [13], Bardina,

Ferziger and Reynolds [14,15], and Biringen and Reynolds [16]. More recently, attention

has turned to necessary extensions and generalizations such as compressible LES (e.g.,

papers by Speziale et al. [17] and Zang, Dahlburg and Dahlburg [18]), to considerations

of models for stochastic backscatter from the unresolved scales into the resolved scales by

Leith [19], to LES subgrid models which depend more correctly on local features of the

flow (e.g., papers by Germano et al. [20] and Piomelli et al. [21]), and to the Monotone

Integrated Large Eddy Simulation (MILES) models [2-4] which are the subject of this

paper.

The usual approaches to LES methodology focus on the flow features which are large

enough to be resolved by the CFD model. This is accomplished by selecting a filter function

F(x - x') which is convolved with a flow variable, f(x, t), to define filtered or macroscopic

variables:

7(x,t) J f(x', t) Y(x - x') dx'.

By definition, therefore, these macroscopic, filtered variables have little or no short wave-

length structure because it has been filtered out. The unknown short wavelength informa-

tion, lost through the filtering, is called the residual or subgrid component f'(x, t). If we

knew f'(x, t), the full, correct solution, f(x, t), would be given by

f(x,i) = f(x,t) + f'(x,t). (2)
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Complete knowledge of quantities such as the mass density p(x, t), the fluid velocity

u(x, t), and the pressure P(x, t), resolved on all length scales down to the Kolmogorov

scale, is beyond reasonable expectation except for flows with very low R,. Indeed, we

probably would be unable to deal with all the data computationally if it were available.

LES, therefore, is founded on the reasonable expectation that macroscopic quantities of

practical interest, such as turbulent mass, momentum, and energy transfer, drag, inter-

species entrainment, depend primarily on the macroscopic variables ;(x, t), U(x, t), P(x, t),

which can be determined computationally with adequate accuracy. Any residual depen-

dence of macroscopic or averaged quantities on the unresolved subgrid component of the

fluid dynamic variables, it is argued, can be modelled by simple expressions involving only

the computed macroscopic quantities.

The incompressible Navier-Stokes equations can be filtered using equation (1) in the

same way as the individual fluid variables when the filter integral commutes with the

partial derivatives. The results,

-= 0 and (3)
Oxi

a Ui 9 Vi uii, 181' + Vru(___- +u2 (4)
at axi  p 8 xi Oxi

are well known (see for example, [1,6,8,20]). In equation (4) the subgrid stress tensor rij,

containing the unknown information from the residual or subgrid fluid velocities, is defined

as

-ij =_ Uijj - Ui-Uj. (5a)

Alternately, the subgrid stress tensor can be written explicitly in terms of the residual and

resolved velocity components,

=ij Ui Uj + "i U, + Ui  Uj +-, + - Ui Uj. (5b)

The conventional model of this subgrid stress is the Smagorinsky model,

7ij = 2 ve Si, (6)
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where V, (KsA) 2 (3 j *3j) 1.()

Here A is taken as the cell size, Ks is the Smagorinsky constant, and ve is the eddy

viscosity coefficient. Juggling these constants near walls and for other special conditions

to improve the performance of the overall LES model has become an art form. In eqs. (6)

and (7), Sij is the strain-rate of the macroscopic flow,

_9 1 =I -a + L j 1 (8)

Because of the divergence term, Orij,/Ox, in equation (4), the principal effect of modelling

the subgrid stress in this way is to add diffusion to the macroscopic equations to represent

the cumulative effects of the unresolved small scales.

Hussaini and Speziale [61, referring to this class of LES approach, noted that "there

are some major difficulties with LES that need to be overcome before it can yield reliable

and economically feasible predictions for the complex turbulent flows of scientific and

engineering interest. These problems are as follows:

(i) the implementation of LES in spectral domain decomposition or high-order finite

difference codes so that complex geometries can be treated;

(ii) the development of improved subgrid scale models for strongly inhomogeneous turbu-

lent flows (e.g., flows with localized regions of relaminarization or large mean velocity

gradients);

(iii) the development of reliable a priori tests for the screening of new subgrid scale models;

(vi) the problem of defiltering;

(v) the problem of modifying subgrid scale models to accomodate integrations to solid

boundaries."

The fact that the mathematical procedures leading to equations (3) and (4) are invalid

when the filter operator does not commute with the time and space derivatives (as occurs

with variable grids or when it is advantageous to use a space- or time-varying filter) is
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usually overlooked. This may not be a barious drawback. Since the undetermined sub-

grid stress tensor must be modelled by a phenomenology in any case, the necessary terms

to correct these mathematical consistency problems can also be lumped into the subgrid

phenomenology. LES approaches using the Smagorinsky approximation, based in part on

an assumed isotropy of the unresolved small scales, replace the divergence of the subgrid

stress tensor with a conservative divergence of diffusive fluxes based on an eddy viscosity,

whose strength depends on gradients of the macroscopic velocities with one or more ad-

justable coefficients. This eddy viscosity is the subgrid turbulence phenomenology which

approximates the effects of unresolved small-scale motions on the resolved fluid dynamic

variables.

In some cases, the filter function is a spatial average over a volume in the fluid cor-

responding to one or more cells of the computational domain (see, for example, [1,16,20]).

In models based on spectral representations, this filtering is done in k-space and a cutoff

is applied to short wavelengths directly in the Fourier spectrum; in some cases, a sharp

cutoff is used and in others, a Gaussian is used to reduce short wavelength components

smoothly [16]. A drawback to these various approaches is the relatively large amount of

smoothing (filtering) needed to ensure that the short wavelength content remaining in the

computed solutions does not contribute significantly to their error. This filtering, in some

formulations, can have a significant dissipative effect even on scales that can be resolved

well. The eddy viscosity also tends to increase the dissipation and can inhibit the linear

growth of instabilities in laminar fluid systems whose gradients are improperly interpreted

as sources of eddy viscosity. The Smagorinsky model can lead [21] "to the decay of the

perturbations even in the instances in which the flow should have been unstable."

As can be seen for the example of the incompressible Navier-Stokes equations above,

the additional terms arise from applying the filter to products of the unfiltered variables,

i.e., from the nonlinear terms. In compressible LES, there are of course, many more

nonlinear terms to be considered. In addition to determining how or whether to model

all these nonlinearities, the user of LES also must prescribe how to convert the answers

computed using smoothed (filtered) variables back to the original unsmoothed (defiltered)

representation [6].
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The ideas underlying these LES approaches are all relatively natural and emphasize

the pivotal role accuracy plays. The solutions of the filtered equations contain little or no

short wavelength structure even when the high Re flow being simulated does. Therefore

it is reasonable to assume that the filtered solutions can be determined accurately using

a discrete computational representation (either a grid or a finite spectral representation),

whereas the correct solution to the unfiltered equations cannot be found so easily numeri-

cally. The tradeoff requirement to model the filtered products of the unknown (unfiltered)

solutions, the so-called subgrid turbulence model, is considered the lesser of the two evils.

By filtering the variables and the equations, accurate solution of the resulting system can

be expected. The control of numerical error is still very important in standard LES models.

however. Although the choice of filter can be used to reduce the short-wavelength content

of the numerical solutions, the short wavelengths generally cannot be completely removed.

Further, the price paid to ensure that the inaccurate short wavelengths can be controlled

is the modification of the longer-wavelength structures which could otherwise be computed

more accurately.

Several assertions about modelling small scales in fluid dynamics seem obvious but

perhaps should be stated. If the fluid dynamic interactions at any particular scale are not

accurately resolved, no numerical model can give more than an approximatior to the true

behavior of the flow at that scale. Further, no computational model is perfect. Therefore.

any CFD simulation model will contain imperfections arising from the necessary tradeoffs

that have to be made to construct it. These two assertions about the process of modelling

the fluid dynamics are followed by two assertions about the fluid dynamics. The effect

of each small unresolved fluid dynamic structure on the resolved macroscopic properties

of the flow is small though the composite, integrated effects can be appreciable. In this

regard, the largest unresolved scales are generally most important; progressively smaller

unresolved scales contribute less and less to the large-scale behavior.

These assertions lead to the conclusion that a range of scales as wide as possible should

be directly simulated; the subgrid models in LES should be restricted to the unresolved

scales to the greatest extent possible with minimal effect on the resolved scales. On the
one hand, accurately calculating as much as possible has to be a good idea. On the other
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hand, the second two assertions suggest that the fluid does not strongly conspire against

the necessary LES partitioning into resolved and unresolved subgrid fields. Indeed, it has

been pointed out, as an example of a fundamental fluid dynamic result obtained from DNS,

that nearby scales seem to interact most strongly [1]. The main effect of the large scales

on widely separated small scales seems to be vortex stretching arising in the mean strain

fields.

An ideal subgrid model should have the following properties:

P1. It should apply without restriction to the fluid dynamic model being solved macro-

scopically, e.g., it should handle compressibility and high Mach number flow, multispecies

effects, etc., as appropriate to the problem at hand.

P2. It should satisfy the global conservation laws of the system as integrated over the

resolved and unresolved scales.

P3. It should minimize the contamination of macroscopic scales by the inaccurately re-

solved flow structures on the grid scale and by the numerical filtering. This allows the

resolvable linear and nonlinear processes which physically drive the subgrid dynamics to

be calculated as accurately as possible.

P4. It should accomplish the physical mixing and averaging expected of the complex but

unresolved flows on the correct macroscopic space and timescales.

P5. It should smoothly connect to the resolved macroscale solutions at each point in space,

even for variable grid size. The effects of all scale lengths, whether modeled or resolved,

should be included exactly once.

In addition, several conditions have to be satisfied in the high R, flid dynamic system

being modeled and the set of equations being used to ensure that the LES-subgrid model

approach makes sense. These conditions are based in part on the self evident assertions

made above and in part on distinctions between LES and Very Large Eddy Simulation

(VLES) as introduced in [1]. These conditions are:

1. The problem being solved is such that the macroscopic LES model can resolve the
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dynamics of the energy containing, turbulence-driving scales,

2. The macroscopic convection velocities are sufficiently larger than the unresolved tur-

bulence velocities that small-scale turbulent motion of material, mass, momentum, and

energy accounts for a small portion of the global transport in the problem, and

3. Unresolved "turbulent" diffusion dominates molecular transport or else the molecular

effects are explicitly included in the LES model equations.

Without these three conditions being satisfied, the expectation of any subgrid turbu-

lence model working is small. Fortunately, any system being tackled by LES satisfies these

conditions essentially by definition. Conditions 1 and 2 above guarantee that the resolved

component of the fluid dynamics which is treated accurately contains most of the informa-

tion of interest. Were this not the case, most of the solution would depend on the subgrid

model, casting the predictive capability into the realm of phenomenology. Condition 3

says that any transport phenomenon which is not resolved convection, and that is at least

as important as the unresolved convection, is also included in the macroscopic model.

Dynamic subgrid models of turbulence are being developed and tested as improve-

ments to this general approach. Germano et al. [201 recently proposed a subgrid stress

model attempting to overcome the deficiencies "by locally calculating the eddy viscosity

coefficient to reflect closely the state of the flow. This is done by sampling the smallest

resolved scales and using this information to model the subgrid scales." This sampling

is accomplished by using a second filter called the "test" filter which is broader than the

underlying LES "grid" filter. The difference between the two subgrid scale stress tensors

calculated usiag these filters is called the "resolved turbulent stress" by these authors who

then use the Smagorinsky model to relate the just resolved large scale viscosity derivatives

to the eddy viscosity.

This approach has several advantages. In laminar flow or at solid boundaries, the

difference between the two filtered stress approximations should vanish. Thus additional

wall damping functions or other phenomenologies are claimed to be unnecessary. Further.

since the average dissipation of the model can be of either sign, this "dynamic subgrid-

scale eddy viscosity" model apparently does not rule out deterministic backscatter. The
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remaining disadvantages appear to be related to the differencing procedure used to identify

the small scale (but resolved) turbulent stresses. Because a difference is taken which

must subsequently be divided out, the expression for the local time-dependent "dynamic"

Smagorinsky coefficient can blow up. The spatial average taken over planes in the flow to

remove this singularity also reduces the desired locality of the model.

Another assumption in references [20] and [21] is the use of the Smagorinsky model

as the functional expression of the estimated turbulence stress closure at both filter scales.

This has been a good starting point, allowing the cancellations which are claimed to give

the model its advantageous properties near walls. The adjustable parameter in the model is

the ratio of the two filter scales, assuming that the smaller filter is the grid scale. Tradeoffs

are involved here. Further, the backscatter allowed in the model is only deterministic as no

stochastic component is postulated. Therefore the important role of small-scale structures

in the flow triggering large scale instability is inhibited [19,21]. We will return to this

issue of backscatter in the next section where we discuss the extent to which monotone,

flux-limiting convection algorithms such as FCT contain an adequate built-in filter and

subgrid model.

3. Computational Fluid Dynamics Requirements for

Direct Numerical Simulation and Large Eddy Simulation

Though accuracy is extremely important, successful large simulatioxs must usually trade

some accuracy for increased efficiency, flexibility, and generality. For example, DNS prob-

lems have generally been treated by spectral algorithms because of their high accuracy in

well-resolved wavelength regimes. Rai and Moin [22], however, recently used finite differ-

ences effectively in DNS of the Navier-Stokes equations because of their relative efficiency.

Therefore it should not be surprizing that other CFD algorithms should be explored for

LES as well.

The CFD requirements for DNS and LES are, in fact, different. In DNS the smallest

resolved scales are continuously being smoothed and dissipated by viscosity. The relative

motions at these scales are quite slow so the ampiitudes of the highest harmonics of the
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corresponding field variables are small. Local numerical errors in the short wavelengths

can have little effect. Since spectral methods excel at intermediate and long wavelength

where physical viscosity gives relatively little smoothing, they generally have been a good

match for DNS problems. In LES, the Reynolds number of the flow one wishes to treat is

so large that viscosity is not effective in removing steep gradients on the smallest resolved

scales. The spectral energy content of motions and gradients on these scales is thus cor-

respondingly larger in LES problems than in DNS problems, in complete accord with the

relatively slow decrease of energy content with wavenumber in the inertial subrange of a

Kolmogorov spectrum [eg., 23-25]. It has been known for some time (Leonard [13]) that

"Modifications of the Navier-Stokes equations must be introduced to simulate properly the

energy cascade. Considerable "damming up" of the turbulence energy in the large scales

would occur, for example, if the unmodified equations were used with an energy-conserving

finite-difference scheme on the advective term."

The view of LES expressed here differs from that in [1] since we believe it is not prac-

tical "to separate the formulation of the LES problem from the numerical method used for

its solution." Such a separation is attractive as it enables numerical analysis of the result-

ing methods to parallel Reynolds stress analysis. Unfortunately the dividends from this

analysis are unsatisfying and incomplete because closure problems remain. Furthermore,

defiltering the resolved-field solutions to obtain information about the physically meaning-

ful fields is a nuisance and the ad hoc subgrid stress models require empirical calibration

by experiments and simulations. Unless LES methodology with strong filtering is used, the
"subgrid fields" have to be matched to the "resolved fields" at the smallest resolved scales

- just where the distinctions between various methods and algorithms are greatest and

numerical errors are largest. Since this matching should be done with some representation

of the fluid dynamics at all scales included once but not twice, the short-wavelength errors

of the CFD algorithm should not be ignored in developing a subgrid turbulence model de-

signed to incorporate physics occurring at the grid scale and below into the flow equations

governing the large-scales.

By filtering the mathematical model in the usual way to obtain LES equations at the

resolved scales, sufficient smoothing is added so that the otherwise underresolved Navier-
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Stokes equations will be well behaved at the grid scale - even for conventional algorithms

not designed to control gradients at this scale. The price is a rather substantial influence

of the filtering at larger scales where most algorithms would be accurate, even on the unfil-

tered equations. Conventional "subgrid" models are nominally formulated independently

of the CFD algorithm being used but need to take the effects of the LES filtering on the

well-resolved scales specifically into account, effectively extending the phenomenological

modeling far into the longer scale lengths where it should not be needed.

Reynolds [1] also discussed the notion of LES performed with no subgrid models, but

did not address the interpretation that these LES systems may already have a minimal

built-in subgrid model, particularly if they are effectively monotone. His discussion of

this notion was addressed primarily to the high-Re simulations being reported in reference

[26] in which the resolution in free space was inadequate to resolve the vortices being

shed from highly-resolved boundary layers. The third-order upwind algorithm used by

Kuwahara and co-workers [26-28] is not monotone in the strict sense but has a fourth

order dissipation which apparently is strong enough to channel the grid scale fluctuations

smoothly into the unresolved inertial range as required of a functioning LES subgrid model

without using an explicit filter. In MILES models, as in all others LES models, residual

Re-dependent effects of course cannot be simulated without viscosity appearing explicitly

or through a phenomenology. Further, boundary layer phenomenologies are still needed

when wall regions are underresolved. Reynolds observes that "LES is very resilient to the

residual turbulence model." Carrying this further, one can expect that a factor of two

increase in the spatial resolution of adequately resolved LES and MILES models will bring

more improvement in the fidelity of the well-resolved scales than an arbitrarily complicated

subgrid model.

The FCT models used in most of the studies reported in Section 4 and for the simu-

lations presented in Section 5 solve the continuity equations for mass, momentum, energy

and any chemical species written in conservation form (see, for example, [29-32]):

+ VpU = 0, (9)

±"" + V (puu) = - VP, (10)at
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aE
5T + V.Eu = -V.Pu, and (11)

"-t + Vniu = for i = 1, 2 ,..., Nspecie. (12)
at atchemistry

In the case of reactive shear flows [29,33,341, other physical processes such as diffusive trans-

port and chemistry are coupled to convective transport using timestep splitting [e.g., 35].

The equations for convective transport were solved in most cases using a one-dimensional

fourth-order phase-accurate FCT algorithm [36], directional timestep-splitting techniques

on structured grids, and appropriate inflow and outflow boundary conditions [31,37]. Other

more recent simulations [38-40], used mutidimensional FCT algorithms, typically with

fourth-order accuracy both in phase and amplitude.

In FCT the fluxes of mass, momentum, and energy between each resolved cell and

its neighbors is calculated using a high order algorithm. These fluxes, to be completely

consistent with the discrete finite-volume representation, are averages over the appropriate

cell interface areas for a time interval corresponding to the timestep. Nevertheless, these

fluxes contain some short wavelength information which cannot be properly resolved by

the grid. Even with the high order or "infinite order" fluxes defined by spectral methods,

the finite resolution of the discrete representation has an associated Gibbs phenomenon

which accounts directly for nonphysical fluctuations of the order of 15% in numerically

convected fluid dynamic quantities. These Gibbs fluctuations are absent only when the

fluid profiles being convected are sufficiently smooth, i.e. have been filtered adequately.

If the intercell fluxes were known exactly, the cell values computed from summing

these fluxes over all faces of the cell and updating the cell values accordingly would be

exact. The flux-correction procedure uses what information is available about the errors in

phase, amplitude and resolution of the composite numerical solution to limit the form these

errors can take in the resolved-scale solution. This nonlinear correction flux appears as a

reduction of a numerically calculated flux to a level determined to be consistent with the

details of the fluid profiles and the grid resolution. This correction usually takes the form of

an intermittant and local diffusion but backscatter is allowed and sometimes necessary to

preserve the monotonicity/positivity properties of the real convected quantities [41]. In the

momentum equations this is quite similar to the explicit addition of an eddy viscosity keyed
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directly into the local instantaneous resolution and accuracy limitations of the underlying

convection algorithm. This effective diffusivity can backscatter because it does not always

appear as a positive diffusion. Further, it automatically counters the nonlinear effects

causing the resolution problems in the first place.

For example, compression, shear, and vortex stretching all can generate unresolved

short wavelength structure in the flow where it did not exist before. These are all velocity

gradient effects which FCT detects as overlarge convective fluxes at some cell interfaces.

These fluxes are limited as needed, effectively adding local or intermittant dissipation.

This limiting or "correction" procedure would have no effect at all if the driving velocity

gradients were not present. Thus the velocity gradients of the resolved-scales, with em-

phasis on the just barely resolved scales, lead directly to the nonlinear numerical filtering,

as in conventional LES based on Smagorinsky-like models. In FCT models, however, ve-

locity gradients in laminar, well-resolved regions do not lead to eddy transport so linear

instabilities, e.g., [42-441, at moderate wavelengths are not hampered.

The residual numerical dissipation of the FCT algorithm in unsteady fluid simulations

has been the subject of detailed investigations [41,45]. In the case of the simulation of free

mixing layers, a small (second-order) numerical diffusion left in the model was investigated

in the low-Mach-number regime [451. Measurement of a global residual numerical diffusion

was performed on uniform grids by comparing the laminar spread of the simulated mixing

layer with that predicted by incompressible boundary layer theory. It was shown that the

small residual numerical viscosity of the FCT algorithm, if left in the model, can emulate

physical viscosity for laminar shear flows at moderately high Re. Based on these studies,

modified FCT algorithms are being tested which push this residual diffusion to even higher

order [45]. The global numerical diffusion was found to be essentially insensitive to changes

in free-stream velocity ratio, and could be reduced rapidly in a predictable way by refining

the grid spacing.

Since monotone convection algorithms were designed to limit errors in the shortest

resolved scales in a physically meaningful way where sensible connection to a subgrid model

is also required, they seem a better choice than linear convection algorithms for use in LES.

Numerical experience at NRL and elsewhere (Section 4, below) suggests that the nonlinear
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filter built into monotone CFD algorithms really serves the same purposes as a subgrid

stress model. These MILES algorithms are derived from the physical laws of causality and

positivity which also underpin convection in turbulent flows. They do minimal damage

to the longer wavelengths while incorporating most of the local and global effects of the

unresolved turbulence expected of LES subgrid models.

The tradeoff for satisfying positivity and causality and for the enhanced accuracy of

monotone methods at short wavelengths is somewhat larger errors at long wavelengths

than found in spectral methods. Since these long wavelength errors are very small in any

case, the comparative advantage shifts to the monotone methods when accurate treatment

of the smallest resolved scales is of paramount importance. These MILES algorithms

work on and transform the fluctuations in the fluid field variables that cascade to short

wavelengths due to resolved field nonlinear effects and instabilities. These unresolvable

fluctuations are converted to the correct macroscopic variables locally but the timescale

for this to occur is controlled by the resolved flow and not by microscopic physics. For

example, viscous dissipation of the unresolved scales appears as heat since total energy is

conserved and grid-scale kinetic energy is dissipated to maintain monotonicity. Diffusion

of the eddy transport type is automatically left in the flow as required, but the fluctuating

driving effects of random-phase, unresolved eddies on the large scales is missing unless

specifically included as a subgrid phenomenology. This deficiency, however, is common in

conventional subgrid models.

Figure 1 illustrates how a macroscopic quantity like entrainment, as defined in Section

5 below, is expected to behave as a function of computational resolution for a conventional

LES model and for a MILES model in a system with turbulence. With linearly filtered LES

algorithms and an explicit eddy viscosity, the correct entrainment for a turbulent high-Re

flow appears to be approached from above as shown by the upper curve. The computed

solutions at finite resolution must be defiltered to correct some macroscopic quantities like

the entrainment or the turbulent kinetic energy to their infinite numerical resolution values

and defiltering is generally unstable.

With MILES algorithms, the effective filtering is nonlinear and thus the nonphysical

diffusion does not extend significantly to long wavelengths. The curve labelled "mono-
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tone algorithm" in the figure and marked with boxes to show changes by factors of two

in resolution corresponds to a macroscopic quantity, here the volume of mixed and jet

fluid, measured at a given time in a series of different-resolution simulations. This curve

illustrates the minimum that is postulated to be found [3-4] at intermediate resolution.

The minimum (extremum) is expected to occur when short wavelengths, which povide

some entrainment, cannot be resolved but when the residual numerical diffusion present

is smaller than the eddy diffusivity of the turbulent flow. This tradeoff is illustrated

schematically by the shaded region in the lower right shown increasing transport (mixing)

due to resolved eddies as the resolution is increased and the curve in the lower left show-

ing increasing "transport" from the flux limiter in monotone algorithms as resolution is

decreased. Beyond this minimum, increasing resolution actually increases the entrainment

because removing the remaining grid-scale numerical filtering has less effect than adding

the corresponding eddy diffusivity from the unresolved scales.

Monotone algorithms are generally devised using minimum dissipation to maintain

monotonicity. If less diffusion is required to get the correct answer, the only solution is to

increase the spatial resolution. Using a CFD algorithm with less dissipation is either unsta-

ble or leads, through blocking or damming up the cascading short wavelength structure, to

nonphysical solutions. FCT algorithms have been analyzed theoretically even though they

are intrinsically nonlinear, and have been shown [46] to converge with increasing resolu-

tion to the correct solution of the underlying continuity equation being solved. This means

that increasing resolution, even without any added subgrid transport model, will lead to

a converged solution to the target high-Re problem once the residual, resolution-based

numerical dissipation has become smaller than the eddy diffusivity from all unresolved

scales. This occurs once the grid spacing bx is finer (smaller) than a critical value as

shown schematically in Figure 1 at log2(Rj,t/6x) = 3.0.
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4. Evidence That Monotone Algorithms Have Built-In Subgrid Models

Our experience base for this paper is derived from use of the monotone FCT algorithms

described above (e.g., [29,36,40,47-50,57]). Below, the acronym FCT will occasionally be

used when it should be understood that the comments apply equally to a number of other

monotone methods. Indeed, many comparable monotone methods now exist; see, Van

Leer [51], Woodward and Colella [52,53], and the extensive references in [29] for examples.

Three-dimensional LES using these methods has been performed for a number of problems

with a focus on unsteady and highly transient systems.

The experience solving compressible flow problems, summarized below for FCT mod-

els, and related computational studies by others, e.g., Kuwahara and co-workers [26-28]

and Woodward and co-workers [54-56], indicates that monotone CFD methods can actu-

ally be viewed as LES models with an intrinsic subgrid algorithm. This built in subgrid

algorithm arises naturally from the nonlinear monotonicity-preserving ("flux-correction"

or "flux-limiting") feature of these methods as described above in Section 3. FCT tech-

niques were actually developed to treat unresolvable short wavelengths arising in nonlinear

convection with no distinction between compressional, rotational, and potential aspects of

the flow. Thus, it should come as no surprise that FCT is a good LES algorithm for tur-

bulent flows although the historical use of FCT and other monotone algorithms has been

primarily to simulate compressive (shock) phenomena.

In the next few paragraphs the use of FCT for time-dependent simulations of shear

flows, jet flows, compressible turbulence, and Rayleigh-Taylor mixing will be reviewed.

Originally these models were applied to problems with strong shocks and blast waves

[52,53,57-60], detailed acoustic-vortex interaction studies [61,62]], reactive shocks and det-

onation cell structure [60,63], and to other chemically reactive flow problems (see, for

example, [29,64,65] and the references therein). Recently our FCT applications have mi-

grated into the compressible shear flow and turbulence arenas 131,61,66-69] so that detailed

comparisons in the usual DNS and LES contexts will begin to be available. The generally

good agreement with experiments, other simulations, and known analytic solutions, where

available, lends credance to the notion that FCT models are LES models without addition

of an external subgrid turbulence model.

Extensive numerical simulations of subsonic, spatially evolving two- and three-dimen-
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sional shear flows using FCT models have been performed by Grinstein and co-workers

[31-34,37,38,71-77]. This work principally examines the evolution of large-scale coherent

structures in the transitional regime within a few tens of diameters of the nozzle or splitter

plate. The high-R, experiments on these flows are turbulent throughout much of this

regime however but the spatially-evolving simulations have been succesfully compared

with them despite the inability to resolve the small-scale structure and with no explicit

subgrid scale model of its effects. The comparisons include both, instantaneous and time-

averaged results. Close agreement with experimental observations was even found in two-

dimensional simulations, including the asymmetric entrainment [71] and spreading rates

[32,72] in a mixing layer, the distribution of quasi-stable vortex-pairing locations in self-

excited circular jets [73]. Close agreement with high-Re experiments was also obtained for

comparisons of base-pressures and vortex-shedding frequencies in bluff-body near-wakes

[741.

New fluid-mechanical information was obtained on global instabilities due to upstream

feedback in free mixing layers [75,76], on the vortex-ring dynamics in circular jets lead-

ing to momentum-flux increases and negative turbulence-production [32], on mechanisms

for passive pressure-drag control in the plane wake [74], and on the effects of chemical

exothermicity on the shear-flow development [33,34]. The generally accurate prediction of

the high-Re flows being modelled would not have been possible if the basic FCT models -

without any added turbulence model - did not have an effective subgrid model built in.

Moreover, very good agreement was also found when conducting (as possible) the

more difficult comparisons based on three-dimensional laboratory and simulation data. The

computations were shown to be capable of simulating the basic three-dimensional coherent-

structure dynamics in transitional shear flows, including that of interacting spanwise rollers

and hcrseshoe vortices in plane mixing layers [72], vortex reconnection leading to the

formation of vortex loops in plane wakes [77], and axis switching and vortex-ring pairing

in square jets [38]. While these simulations again focussed on large-scale dynamics, the

real systems being modelled also have significant small-scale structure which the FCT

models could not resolve. More recently [78], the effects of small-scale dynamics in the

transitional shear flows was also investigated in addition to that of the large scales. The

upstream turbulence present in laboratory plane-wakes was simulated by breaking the

two-dimensional coherence of the inflow, perturbing the inflowing free-stream velocities
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with suitable superpositions of sinusoidal modes with random phases and amplitudes. The

validity of the approach was established by comparing the incoherent quantities resulting

from ensemble averaging (eduction) of the three-dimensional coherent structures with those

educed in laboratory experiments [79].

These models were also used in an extensive series of computations aimed at under-

standing and quantifying the generation of turbulence and the turbulent mixing of shock-

and beam-heated channels in air such as arise in the propagation of lightning, lasers, and

charged-particle beams. Experiments, e.g., [80,81] and references therein, showed cooling

of the heated channels which could not be explained by molecular thermal conduction or

the onset of convection. The Reynolds number of the resulting turbulence appeared to

be very high. The theory developed to explain this was based on turbulent vorticity gen-

eration due to shock-density gradient interactions caused by asymmetries in the channel

heating. This compressible theory was illustrated by FCT simulations which were subse-

quently calibrated using this theory and experiments (32,33,82,83]. The simulations were

carried out for a long time the evaluate the turbulent growth and cooling of the channels in

a number of circumstances including configurations where the asymmetries where intrin-

sically three-dimensional. The effective turbulent mixing diffusivities of the simulations

agreed well with experiment, providing ample evidence that the underlying FCT models

could deal with eddy thermal conductivity as well as eddy viscosity.

The generation of complicated mixing flows by strong Rayleigh-Taylor instabilities

resulting from laser acceleration of thin foils is yet another class of compressible fluid

dynamics problem considered extensively and successfully by FCT algorithms. Simulations

of linear Rayleigh-Taylor growth with ablation [84,87,891, nonlinear mode saturation and

foil disruption [85,86,88], and comparison with laboratory experiments [86-88,90] have all

been performed to determine stability and symmetry requirements for laser-driven Inertial

Confinement Fusion. These simulations include nonlinear thermal electron conduction

and, in some cases, radiation transport to drive the instabilities in high-R, fluids where

short scales are certainly excited by laser asymmetries and target imperfections. This is

a physically more complex situation than ideal gas dynamics or hydrodynamics but the

underlying fluid dynamics occurs with large perturbations and R, is usually in the range

104 to 106 where there is every expectation that a full spectrum of compressible turbulence

will be excited.
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These FCT simulations, used to support and guide the NRL experimental program

for a number of years, have been compared in some detail with theory and experiment

for high Re flows with generally excellent agreement. The comparison of linear and non-

linear growth behavior with theory and with experiments has been carried out at least

as extensively for this type of flow as for the shear and jet flows reported above. Most

of these computations were conducted in two dimensions but some calculations have also

been done in three dimensions [89]. During the late stages of some of these experiments

the flows are certainly turbulent on the small scales. If the underlying FCT algorithms

were not accounting for the unresolved small scale motions in the fluid, at least approx-

imately correctly, the quality of these comparisons could not have failed to show some

major inconsistencies.

Other monotone algorithms in addition to FCT have been applied to high-Re flows
which physically are turbulent. The predominant use of these methods, however, has been

for dynamic problems with shocks which either do not last long enough to teach us much

about the intrinsic subgrid behavior or which are run on such inhomogeneous problems

that the focus has been on the large-scale behavior. An exception is the work of Woodward

and co-workers [54-56], who have looked at homogeneous high Mach-number turbulence

with the Piecewise Parabolic Method (PPM) in much the same way that low Mach-number

isotropic, homogeneous turbulence has been studied. Developed by Woodward and Colella

[52,53], PPM is completely monotone, has been studied carefully, and has been optimized

for a number of parallel and vector processing computers.

Using PPM one finds convergence of Euler (MILES) computations of increasing res-
olution to the solution obtained by very high resolution Navier-Stokes computations of

the identical physical problem. The Kolomogorov k- 5/ 3 spectrum, really expected only as

a transient because the flow is decaying rather than being driven at long wavelength, is

seen as an envelope to the series of MILES spectra obtained at increasing resolution. This

behavior has been seen for several two-dimensional configurations and the same behavior is

also seen in three dimensions [56]. The converging spectra in this work, like the converging

measures of entrainment soon to be discussed in Section 5, is rather direct confirmation
of the existence and essential correctness of the effective subgrid model provided by the

nonlinear flux-limiter in monotone algorithms.

Another group of researchers led by Kuwahara, e.g. [26-28], has had extensive experi-
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ence in very low Mach number, turbulence-related simulations using a third-order upwind

method which seems to be nearly monotone in that it has a fourth-order dissipation term

which apparently obviates the need for additional linear damping (Section 3). This al-

gorithm has been used without an explicit LES filter for extensive vortex shedding and
vortex separation computations in both two and three dimensions for problems where the

fluid has dynamic structure at scales that cannot be resolved even by the very fine grids

employed. Small-scale vortices, generated in a well-resolved boundary layer, are convected

into regions of the grid where they cannot be well-resolved. The model automatically fil-

ters these unresolvable fluctuations, apparently without damaging effects on the solution
or on large-scale measures taken from the solution. Reynolds numbers as high as 106 have

been simulation this way, allowing the drag crisis on a circular cylinder to be demonstrated

explicitly without an boundary phenomenology of any sort.

The observed ability of the FCT-based models to simulate the transitional shear-flow

dynamics and post transition turbulent transport strongly supports the idea that the ef-

fective numerical dissipation due to the nonlinear FCT high-frequency filtering - combined
with the conservative, causal and monotone properties of the algorithm, play the role of

a a minimal subgrid model in these applications. Some of the monotone methods wert

specifically developed for shock problems, and, because they do such a good job of shock

capturing, the bias still is toward high-speed applications. This usage pattern, coupled
with the origin of many of the monotone methods naturally has led to the impression that

all monotone methods are limited to high Mach number. This impression is incorrect for

FCT and many of the other monotone algorithms.

When the physical viscosity is small, i.e. for underresolved Navier-Stokes flows, or

alternately, when the computational cells are large, the large-scale features of solutions of

the Navier-Stokes equations and the Euler equations are essentially identical using FCT.

Both solutions show the effects of the flux-correction procedure as a residual, nonlinear
filtering of short wavelengths. This filtering influences long wavelengths negligibly and yet
is strong enough at short wavelength to prevent aliasing of high frequencies into the long

wavelengths. This was shown for Berger's equation [91] in detailed comparisons with a

spectral model. It has subsequently been checked repeatedly for fluid dynamics through

spatial convergence tests in every major configuration where FCT has been applied to
jets, shear layers, and reacting flows, e.g. [32-34,61,76]. These tests have also been done ill
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three dimensions (see, e.g. Section 5 below) and generally show a converged long wavelength

behavior when the system size is large enough to support at least a modest ratio between

the energy containing long wavelengths and the eddies of a few cells wavelength which

dissipate quickly. In the context of shear-flow simulations, the correct initial (linear)

Kelvin-Helmholtz growth is ensured when the wavelength of the most amplified mode is

resolved with 20 or more cells [44). Consistent with this result it is found that coherent

vortex structures more than 15-20 cells across change negligibly when the resolution is

doubled or quadrupled to allow resolution of much smaller scales.

Any algorithm, including monotone algorithms, that uses knowledge of the grid rel-

ative to variations of the evolving solution, cannot be expected to be Galilean invariant.

Adding a constant velocity to the flow everywhere moves real structures in the computed

solution to differerL locations relative to the grid at the end of each timestep and they

will be resolved differently if they have any grid-scale structure. Indeed, the Gibbs phe-

nomenon error, which arises from finite resolution and is associated with convection across

a grid, is going to be present regardless of the solution algorithm. This Gibbs error is

also not Galilean invariant and is a function of the representation and resolution, not the

solution algorithm. In fact, the non-Galilean feature of monotone algorithms is designed to

cancel this non-Galilean aspect of the solution arising from the Gibbs phenomenon. The

composite interaction of a monotone algorithm with the representation gives a solution

which is essentially Galilean invariant.

Conversely, any algorithm which itself is Galilean invariant will be unable to cancel the

Gibbs error without extensive diffusion. Thus the resulting solution will either be highly

diffusive or will not be even approximately Galilean invariant. In DNS applications the real

viscosity provides adequate diffusion for the resolved velocity field. Here, adequate diffusion

is defined to be at least as much as occurs in first order upwind algorithms. The price of

this approximate Galilean invariance, which equate- closely with physical monotonicity, is

a severe limit on the Reynolds number which can be reached. In multimaterial flows or

flows with contact surfaces, viscosity alone is not generally adequate to ensure Galilean

invariance for physical variables other than velocity which is smoothed by viscosity.

In the remainder of this section we consider how monotone algorithms function as an

integrated subgrid model and do this in the context of the five desired properties of a sub-

grid model identified in Section 2 above. Properties P1 (generality) and P2 (conservation)

22



are built into the formulation of the basic flux-corrected convection algorithm. Property P3

(minimal contamination of resolvable Scales) is the ensatz underlying monotone convection

algorithms. Sharp gradients in fluid profiles are convected with minimal numerical smooth-

ing consistent with keeping positive quantities positive and keeping physically monotone

profiles monotonic to the maximum numerical resolution allowed by the grid. Since min-

imal dissipation is used to do this and since this flux-correction or flux-limiting is highly

localized, it follows that monotone algorithms also entail minimal contamination of the

well-resolved long wavelengths. As noted above, detailed measurement [41,45] gives an

effective dissipation scaling roughly as the fourth power of the spatial scale. This means

that flow structures that are 10 times harger than the grid scale structures, which must
be dissipated strongly, feel 100 times less residual dissipation than the same macroscopic

structures would be subjected to in a conventional LES or DNS model where the short

scales are controlled by a viscous or eddy diffusivity term in the equations. Thus one can

expect these large structures to be accurately convected for Reynolds numbers up to 100

times larger.

Existing subgrid models, until recently, have been generally limited to constant den-

sity, incompressible, non-reacting flows on uniformly spaced meshes, effectively violating

property P1. Current developments of LES for compressible and reactive flows, even with

Favre averaging and filtering, have many more nonlinear closure terms to deal with and

correspondingly more phenomenologies with free constants to be calibrated. These diffi-

culties, at least to first order, do not plague FCT and other MILES approaches.

Property P4 (physical suhgrid mixing) is enforced by FCT through the residual local

dissipation left to enforce property P3. This feedback clearly loses e- -- information

about the unresolved small scales but other subgrid models also lose this information as

they generally lack the random feedback effects. Furthermore, FCT and other MILES

algorithms do allow deterministic backscatter from the short wave'engths to the resolved

scales through the intermittant and localized nature of the flux-correction. Leith [19]

has proposed and considered models for stochastic backscatter which also point the way

toward their inclusion in MILES algorithms. A random local excitation of long wavelengths
is req;,ired and could easily be added, for example, since the exact amount of FCT flux-

correction is known at each cell interface, but this has not been done to date.

Property P5, that the subgrid model match smoothly onto th, LES model, is perhaps
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the most attractive and compelling aspect of using monotone convection methods for LES.

A consistent and integrated viewpoint is used to convert unresolvable fluid dynamics (and

grid resolution limitations) into the subgrid fluid dynamic fields. Even with spatially

and temporally varying grids, a severe problem for conventional LES, the residual long

wavelength transport from the MILES flux limiters acting on the cascading subgrid-scale

fluctuations is included causally and consistently in the composite model while ensuring

Properties 1-4.

The intrinsic filter in monotone algorithms is problem and grid dependent but, with

increasing resolution, the numerical solution converges to the solution of the underlying

partial differential equations being ,olved [46]. This means that the well resolved field

solutions may differ at most slightly from the exact (lami=,ar) solutions of the equation

set being modeled. Inverting this built-in filter (i.e., defiltering) is not possible except

statistically but this inversion also should not be necessary for quantities which depend

only on the well resolved scales of motion. Conversely, the FCT filter can be applied to

experimental data or to theoretical models if more detailed comparison with computations

of the resolved scales is desired and the only information available depends significantly

on the unresolved scales.

In the next section we discuss series of simulations performed specifically to look at

the convergence of FCT with increasing resolution, to look for the minimum of entrainment

expected at an intermediate resolution, and to determine how much added eddy transport

may be needed or desirable.
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5. Calibrating Flux-Corrected Transport for Large Eddy Simulation

A series of three-dimensional simulations have been carried out to study the convergence

of a MILES algorithm, FCT, as resolution is increased for a high-Re flow. These simula-

tions expose the action of the built-in subgrid model as more and more short-wavelength

structure is resolved in the solution. The problem chosen is the turbulent entrainment of

quiescent background air into a fast but subsonic cylindrical jet. This system highlights

the intrinsically three-dimensional phenomena which contribute to enhanced mixing, treats

a spatially inhomogeneous problem which is of interest beyond its implications for LES,

and prepares the way for reactive jet and detonation simulations using efficient models of

exothermic combustion chemistry. Turbulence is often localized spatially, working its way

into neighboring regions of potential flow through a fairly sharp time-evolving interface

where the vorticity drops rapidly to zero. A number of the systems described in Section 4

have this property as does the fast but subsonic jet simulated here.

In this problem the jet is composed of air at standard atmospheric temperature and

pressure, the same conditions as in the background. The gas constant -y = 1.40 and

the jet centerline velocity is Vjet = 150 m/s, giving an initial Mach number M = 0.452.

The jet velocity is constant inside 1.0 cm radius, decreases linearly with radius from Vjet

to zero between 1.0 cm and 1.4 cm, and is zero outside r = 1.4 cm in the undisturbed

background gas. Thus the initial vorticity thickness is 6 = 0.4 cm and the initial jet

radius is Riet = 1.2 cm. This shear layer is resolved with at least two or three cells in

the coarsest-resolution grid and with eight to ten cells in the fine-grid cases. This ensures

that the most unstable modes [42,43] are well resolved by 20-40 cells per wavelength and

thus prevents nonlinear saturation of different, progressively higher-frequency modes from

dominating the evolution of the system as numerical resolution is increased.

The system considered here is periodic in the X (streamwise) direction to maximize

the use of grid resolution and to simplify the computations for the TMC Connection

Machine. A number of simulations were carried out with a system periodicity length of

L = 12.8 cm. Most of the simulations started with a relatively large amplitude mode 3

helical perturbation of the circular jet. Spatial inhomogeneity enters thiF problem through
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the boundary conditions as the grid is stretched away from the vicinity of the jet in the

Y and Z directions. Different transverse gridding, different formulations and amplitudes

for the initial perturbations, and different ways of evaluating the macroscopic entrainment

and other diagnostics were formulated and tested. The domain was structured so that the

jet flows within a central core of uniform cubical cells.

Physically identical jets were simulated using the Naval Research Laboratory Con-

nection Machine (CM) with different computational meshes to test convergence as more

spatial scales are resolved. The first grid has 128 x 64 x 64 cells of size 0.1 cm which will

be referred to as medium resolution. The second grid has 256 x 128 x 128 cells of size

0.05 cm, referred to as fine resolution. To allow longer calculations without degradation

from stretched cell regions, several tests were performed to pick a suitable gridding struc-

ture. The computations reported here were run with stretched cells six times larger at

the side boundaries and with uniform cells occupying the central 70% of the grid in the Y

and Z directions. Thus the system width is about 12 cm but the jet moves some distance

sideways before encountering stretched cells. As the jet becomes highly convoluted in this

grid, however, fluid eventually moves into the stretched cell region and the computation

then loses resolution.

A version of the code was developed to run simulations on a Convex C2 with a

64 x 32 x 32 mesh of 0.2 cm cells, called coarse resolution. Gridding and initial conditions

are identical with the CM calculations but the Convex was used because the 64 x 32 cross

sections of the coarse grid are too small to make effective use of the CM.

Table 1 shows the resolution parameters and scaling ratios for these simulations of

MILES convergence and for some related, finer resolution grids which can eventually be

used to extend the results here to even higher resolution. For the simulations reported

here the jet was perturbed in a mode-3 helical pattern at a wavelength of 4.27 cm which

is A = 3.56 X Rj,t. This perturbation rotates three times in traversing the length of the

system and was originally implemented by displacing the column helically off axis about

0.05 cm with zero transverse velocity. This way of initiating the system was used only for

the medium-grid mode amplitude results shown in Figure 2 and discussed below. For the
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series of three MILES runs reported below testing convergence, the displacement was set

to zero but the jet was given a velocity through the background transverse to its axis with

a fixed magnitude but with a direction rotating three times in traversing the system. The

transverse velocity in each cross section had a constant transverse velocity for r < Rjt

inside Rjet = 1.2 cm and an incompressible (dipole) recirculation in the background gas

outside the jet. In both initialization procedures the perturbation level corresponded to a

couple of percent of Vt while the density and pressure were left unperturbed.

Neither of these two ways of perturbing the straight jet column is an exact eigenmode

of the linear system so some ambiguity exists as to how to determine the evolving mode

amplitude. Mode amplitudes are approximated here by averaging the transverse displace-

ment of the fluid inside of Riet at each axial cross section of the computational domain

and then by Fourier analyzing these rows of average Y and Z transverse velocities as a

function of X. This Galerkin-like procedure is most meaningful in the linear regime but

simplifies the question of how to analyze an inhomogeneous three-dimensional field and

bypasses the lack of accurate eigenfunctions for this particular problem.

The third mode of the system, A = L/3, was chosen so that physically identical flows

could be initialized with different cell sizes, as indicated by Grids 2, 4, 6, and 8 in Table

1, while catering to the CM's preference for grids where the number of cells is a power

of two. By increasing the perturbation wavelength by 50% and reducing the cell sizes a

corresponding amount, the chosen wavelength could be maintained by switching to mode 2

of the system. Further, the increase of a factor of two in the number of cells perpendicular

to the jet axis accomodates the better resolved flow entirely within uniformly spaced cells.

Table 1 presents the resolution parameters of a sequence of cylindrical-jet runs testing LES

convergence by comparing entrainment time histories. Simulations for Grids 1, 3, 5, and

6 were performed for this paper. Grids 6, 7, and 8 have been made possible by memory

upgrades to the CM and will be used for revised MILES calibration runs in the future.

Using the third mode of the system as the primary perturbation allows modes 1 and

2 to appear later in the simulations as subharmonics arising in large-scale vortex merging,

thus bringing longer as well as shorter wavelengths into the flow. Since, however, the
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amplitude of these subharmonic modes was initially set to zero in the simulations presented

here, these modes began to grow significantly from roundoff errors only toward the end

of these simulations. These subharmonics have yet to be explored systematically though

several short auxiliary runs were carried out at medium resolution (Grid 3) with modes 3,

4, and 5 perturbed simultaneously while testing the gridding.

Since the primary goal of these simulations is the turbulent mixing which follows the

nonlinear saturation of the initial Kelvin-Helmholtz instability, the linear phase of the

problem is treated more crudely than if linear theory and the linear behavior of the code

were being compared. Large initial perturbations are used to speed the transition to the

important nonlinear mixing regime between 1.0 ms and 2.5 ms (e.g., Figures 2 and 6). The

initial perturbation was not a perfect eigenmode and the nonlinear limiter in FCT, also

used during the linear growth phase, has the effect of generating the higher harmonics of

the initial shear layer perturbation with the same symmetry as mode 3, i.e., modes 9, 15,

21, etc., though these modes were not present in the initial perturbation.

The amplitudes of these shorter-wavelength modes as well as of mode 3 are shown as a

function of time in Figure 2 for the early Grid-3 simulation (dashed curves) initialized with

a transverse helical jet displacement and for the later Grid-5 run (solid curves) initialized

with a helical transverse velocity perturbation. The mode-9 shorter wavelength instability

was about 14 cells long in the medium resolution grid and 28 cells long in the fine grid.

It appears at low amplitude initially but has a larger linear growth rate than the primary,

mode 3. Flow visualizations during the linear growth phase make it clear that mode 15

(and also modes 21, 27, etc., not shown in Figure 2) are all phased to mode 9. An example

of such a visualization is shown in Figure 3 for a higher-resolution run using Grid 6. The

figure shows grey-level contours of the three velocity components on a cross section through

the center of a higher-resolution (256 x 256 x 256) jet near the end of the linear growth

phase. In this figure, the fully-developed Kelvin-Helmholtz vortices of shorter-wavelength

can be seen clearly superimposed on one wavelength of the primary perturbation which

is still growing. In the simulations of Figure 2, mode 9 saturates at considerably lower

level than the primary mode 3 and certainly is superimposed on top of the primary. These

shorter-wavelength modes constitute the secondary instabilities of turbulent cascade and
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contribute significantly to the additional entrainment in the fine-grid FCT run relative to

the medium-grid run when the flow is fully developed.

Figure 2 shows an identifiable period of linear growth of the primary mode 3 in both

medium resolution (Grid 3) and fine resolution (Grid 5). The medium-grid run, initialized

with a jet displacement (but zero transverse velocity), has both growing and decaying

eigenmodes present initially with the same amplitude. This explains the zero slope of the

curve (dashed with boxes in the figure) at t = 0.0 s as the composite mode amplitude

departs quadratically from its initial value. Changing the form of the helical perturbation

from spatial displacement to transverse velocity, as described above, had the effect of

reducing the initial mode amplitude perturbation by almost a factor of two. The inital

pressure perturbation is still zero in the fine-grid case, so both growing and decaying modes

are still present with comparable amplitude. Therefore, linear growth is only seen after one

or two e-folds (T = 0.17 ms) have elapsed. Nevertheless, more than an order of magnitude

of linear grown is seen, as emphasized by the straight line. Furthermore both resolutions

clearly show the same linear growth of mode 3 despite their differences in resolution and

method of initial perturbation. This figure also shows clearly that the effective subgrid

model intrinsic to FCT is not damping the growth of either mode 3 or mode 9 appreciably.

Comparison of the measured growth rates with published results from linear theory is

complicated because of the differences between this physical protlem and those found in the

literature. Martin and Meiberg [92] simulated the temporal evolution of helically-perturbed

jets on the linear and early nonlinear regimes using a vortex-dynarnics method but do not

present a linear growth-rate analysis. Michalke and Hermann [42] and Michalke[43] have

performed linear stability analysis for axisymmetric jets. None of the shear-layer profiles

considered by these authors matches the one used here. Their data does not include

growth-rate curves for Rj- 18 (0o=initial momentum thickness) which characterizes the

three simulations in the convergence series performed for Figures 2, 6, and 7. Qualitative

comparison is possible, however. The spread of linear growth times, estimated from e

20 results, is 0.09 - 0.15 ms for mode 3 and 0.05 - 0.10 ms for mode 9. These numbers

are consistent with the longer growth time in the simulations, -r = 0.17 ms. Further,
theory says mode 6-8 should be fastest growing but the difference in growth rate between
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modes 3 and 9 would only be about 50%. More detailed investigation of the linear fidelity

of these simulations is unwarranted without better results for comparison and simulations

performed with a considerably smaller initial perturbation.

Nevertheless, the primary perturbation clearly grows linearly at first. During this

phase, very small nonlinear effects from the flux limiter trigger shorter wavelengths which

grow faster. The resulting saturation of the Kelvin-Hehnholtz instability rapidly becomes

extremely complex (turbulent). Figure 2 shows an apparent delay of 0.1 ms in the growth

and saturation of mode 3 in the fine-grid case relative to the medium-grid case. This

occurred because the transverse initial velocity of 100 cm/s (solid lines in Figure 2) cor-

responded to about a two times smaller displacement of the jet in terms of the initial

perturbation amplitude than used for the medium grid (dashed lines). It is also clear that

the mode 9 secondary component of the unstable shear layer saturates at a higher level

and at a later time in the fine-grid case.

These differences are explained by the changed resolution. In the fine grid, the effects

of the nonlinear flux limiter are less significant than in the medium or coarse grids and

thus the secondary mode amplitudes are initially smaller. They eventually grow to a higher

level in the fine-grid case however, because there is less nonlinear damping of the short

wavelengths by the built-in subgrid properties of the FCT. This can be seen at about 1.5 ms

where the fine grid mode 9 peaks at a level of about 300, twice as high as the medium-grid

case and a full 0.5 ms later. Since energy is conserved in these flows, the additional energy

in the fine grid mode 9 has to come from somewhere; a corresponding small reduction in

the mode 3 amplitude is seen at about the same time, relative to the medium-grid case.

This is significant because a macroscopic quantity such as entrainment, which depends on

both modes 3 and 9, may actually increase more slowly at first on the fine grid relative

to medium and coarse grids due to the necessity of populating all resolvable scales of the

turbulence from a fixed amount of available kinetic energy.

Figure 4 shows several cross-sections from the medium-grid solution (top two panels)

and from the fine-grid solution (lower panel). Grey-level contours of the jet fluid are shown

as it mixes with the background air. The effects of mode 9 are superimposed on mode 3
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here. Vorticity of one sign rather quickly appears on the other side of the jet as it is pulled

around by the nonlinear helical structure. Thus the nonlinear gradients are steepened

further by the stretching inherent in this flow, and this leads to additional secondary and

tertiary small-scale structure. At medium resolution, some of this fine-scale structure can

be seen but the fine-resolution calculation shows considerably more structure. Viewed

globally, the nonlinear Kelvin-Helmholtz instability in this geometry seems to deform the

jet into a roughly helically symmetric core with a thin, helical shroud nearly encircling it.

This shroud can be seen as the thin strips of fluid indicated in all cross-sections in the

lower panel of Figure 4. Between the shroud and the core is a layer of engulfed fluid which

is essentially vorticity free and which is entrained by the scales of turbulence resolved in

these FCT simulations.

The shear-layer entrainment velocity gives the rate of propagation of the interface

between rotational and irrotational fluid. On the smallest scales, viscosity acts to propagate

vorticity into the irrotational fluid. However, the entrainment velocity is controlled by the

speed at which the contorted interfaces of the largest scales move into the surrounding

fluid [25]. More generally, the entrainment velocity gives information on the rate at which

the free streams become mixed as they join the shear layer. Approaches to measuring

fluid entrainment have typically been either based on the vortical content of the fluid [72]

or obtained approximately by examining the spread of the velocity profile, in terms of

volumetric fluxes [93], or evaluating the so-called passive scalar entrainment [94], which is

closest to the approach used here.

Here the study of convergence with resolution is based on examining the temporal

evolution of the jet volume, which is taken as a convenient macroscopic measure of entrain-

ment. This entrainment volume was used to measure the size and cooling rate of channels

generated by lasers, lightning bolts, and charged-particle beams in air [58,59,82,83] as de-

scribed in Section 4. The sensitivity of the present convergence studies to this particular

definition of entrainment, as well as its dependence on the choice of initial conditions.

deserves further study and will be compared with other measures in investigations to be

reported elsewhere.
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A passive scalar 4, initialized with the same linear profile (0 < € < 1) through the

shear layer as the X-component of the velocity, is used to mark the fluid initially in the jet.

The volume of fluid in the entire system that has € > e defines the entrainment volume

for a given 0 < e < 1. It is calculated by summing up the volume of cells satisfying the

criterion 0 > E. Initially this entrainment volume is approximately irR3 t 2 L. Figure 5

shows an example of this overall entrainment diagnostic using e = 0.02, 0.05, and 0.10

plotted as a function of time for a recent fine 256' calculation (Grid 6). As the jet fluid

spreads, the average value of the passive scalar in the jet plus mixed region drops. Initially

= 0.5 marks the interface between the jet and the background at r = Rjet. Lower

values of e give somewhat larger volumes. As mixing progresses, however, the entrainment

volume quickly doubles, at which point a diagnostic with f = 0.5 would soon miss much

of the mixed fluid because the background air would tend to dominate the mixture almost

everywhere. A lower value of e, as used here, allows calculations to progress longer before

the entrainment diagnostic loses its meaning due to dilution as the volume with 4 > f

begins to decrease.

The three levels shown in Figure 5 give almost the same entrainment volume initially

but the small deviation grows as mixing creates a larger and larger volume of fluid with

entrainment ratios between, for example, F = 0.05 and 0.1. The value e = 0.05 was

used as a compromise for the cases here with attention paid to the bounding values of

f to ensure that the main body of the mixed fluid was not diluted out of the range of

visibility. Figure 6 shows this entrainment-volume diagnostic computed as a function of

time at the level E = 0.05 for the fine, medium, and coarse grid runs performed for this

paper. The entrainment volume was normalized by dividing out the initial volume in

each of the three runs because each of these initial volumes was slightly different. This

occurs because the entrainment threshold e falls across the profile of the passive scalar

slightly differently on each of the three grids. Since a cell either does or does not satisfy

the entrainment criterion, the corresponding sums are quantized and differ by about a

percent. This became important because the entrainment, as can be seen, is so nearly

equal in the fine and medium resolution cases.

With most linearly filtered LES algorithms, the correct entrainment for a turbulent
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high-R, flow would be approached from above, as shown on Figure 1. The finite resolution

solutions must be defiltered to convert a macroscopic quantity such as the entrainment to

its infinite resolution value and that procedure is potentially unstable numerically. With

MILES algorithms, the effective filtering is nonlinear and thus the nonphysical diffusion

does not extend significantly to long wavelengths. The three curves in Figure 7, corre-

sponding to 2.0, 2.2, and 2.4 ms in the evolution of the jet at the three resolutions chosen,

demonstrate that the predicted minimum [3,4] is indeed found at intermediate resolution.

The minimum occurs because short wavelengths, which would provide some entrain-

ment, cannot be resolved. The residual numerical diffusion present in high-order monotone

algorithms is smaller than the eddy diffusivity of the turbulent flow, so increasing resolu-

tion increases the entrainment. The minimum is not very deep and is resolved with only

three points in these simulations but it appears to be getting deeper as time progresses,

another indication that the additional scales of vorticity in the fine-grid case are continuing

to increase the entrainment-volume relative to the medium and coarse grid. The fact that

the minimum is so shallow, at most 2-3% deep, is actually beneficial. A shallow minimum,

while being correspondingly more difficult to measure accurately, means that virtually no

additional subgrid-scale transport, as indicated schematically in Figure 1, is needed to get

the "right" answer. The intrinsic subgrid model provided by FCT, at least for these cases,

is very good.

6. A Hydrodynamic Analogy for Turbulence Modelling

In fluid systems, turbulence often begins as a large-scale response to unsteady external forc-

ing or to macroscopic instabilities as they become nonlinear and restructure the otherwise

laminar flow. Energy drives the complex flow first at long wavelength but then cascades

to shorter and shorter wavelengths through a sequence of nonlinear couplings where it is

eventually dissipated viscously. The flow of energy through the "inertial range" to the

Kolmogorov scale [23-25] can be likened to the flow of water away from the center of a flat

table on which it is being poured. This analogy provides a way to understand and visualize

this turbulent cascade in the context of the different approaches to LES considered above.

The three panels of Figure 8 depict this analogy schematically.
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Driving a turbulent flow at resolved macroscopic wavelengths is like pouring water

onto the center of a large flat table. The water flows radially outward, getting thinner and

moving faster so the mass flow past any radius is constant. Increasing radius away from

the center of the table is analogous to increasing wavenumber of the eddies in a turbulent

cascade. The decreasing depth of the water is analogous to the decreasing energy content

in each wavelength scale of the turbulence. The inertial range of the turbulent cascade is

represented by the region between the vertical dashed lines where the profile is smoothly

decreasing in Figure 8.a. The radius of the table and how the water eventually falls off the

table, analogous to the viscous dissipation of turbulent energy at the Kolmogorov scale

in very high-Re flows, clearly does not significantly affect the depth of the water near the

center of the table. In this hydrodynamic analogy, different possible contours at the edge

of the table correspond to the different properties of various high-Re Navier-Stokes models,

conventional filtered LES models and MILES models.

In MILES models based on monotone convection algorithms, the nonlinear flux limiter

acts is a built-in subgrid model coupled intrinsically to the short wavelength errors in the

solution. Turbulent energy reaching the grid scale is extracted from the calculation and

converted to the correct conserved quantities. This has the effect of curving the table edge

sharply downward, as illustrated in Figure 8.b, so that the water can flow smoothly off

at a finite radius without significant perturbations reaching the center of the table. The

dissipation in MILES algorithms is physically matched to the grid-scale errors to minimize

effects on long wavelengths which are accurately resolved.

With conventional, high-order CFD algorithms which are not monotone, dissipation

is added through the physical viscosity. Thus a blocking or damming up phenomenon [13]

occurs for high-Re flows where the grid-scale fluctuations build up to nonphysical levels

because the excitation cannot be removed at the rate it is generated. In this water-spill

analogy, this energy-blocking effect is like a raised rim around the edge of the table at a

radius corresponding to the grid scale of the computation. A layer of stagnant water would

form out to the table edge below the height of this rim. To prevent this, conventional LES

algorithms use the grid filter, often in the form of a spectral cutoff, to add appreciable

smoothing to the equations. In addition, the eddy viscosity used to model the effects of
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the subgrid scale turbulent stress, incorporates significant additional dissipation. In some

models this added dissipation is sufficient to stabilize laminar flows which otherwise would

be unstable as noted in [20,21]. The effect of filtering the equations or including significant

physical or eddy viscosity is analogous to curving the surface of the table downward so the

rim is now at the level of the table center.

7. Summary and Discussion

Above, it is argued that nonlinear monotone methods really have a built-in LES filter and

a matched subgrid model which do minimal damage to the longer wavelengths while still

incorporating, at least qualitatively, most of the local and global effects of the unresolved

turbulence expected of LES. When properly formulated, a wide variety of these monotone

convection algorithms transform unresolvable structure in the fluid field variables into the

appropriate modifications of the resolved fields. This structure and the corresponding flow

energy are pushed to short wavelengths by nonlinear convective effects and instabilities

in the flow. Because global conservation is enforced through purely local algorithms, the

grid scale variability is locally converted to the correct macroscopic variable averages. For

example, kinetic energy entering the subgrid scales from the resolved motions is damped

as the velocity fluctuations are dissipated by the flux-limiter in FCT. Since energy is

conserved while kinetic energy decreases locally, the pressure goes up accordingly just as

if physical viscosity at unresolved scales had converted the Kolmogorov-scale structures to

heat. Of course the details (and short time delays) associated with the cascade through

the unresolved inertial range is lost but this is accepted in all LES modelling. Indeed,

this appears to be an area where fluid dynamics has been kind to us in the sense that the

large scales do not appear to be particularly sensitive to the components of the flow which

cannot be simulated.

Furthermore, these methods are quite capable of capturing quantitatively how much

unresolved structure from the long wavelengths is actually present. Diffusion of the eddy

transport type is automatically left in the flow, but the fluctuating, driving effects of

random-phase, unresolved eddies on the large scales is missing unless specifically included

as a subgrid phenomenology. A factor of two increase in the spatial resolution of LES and
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MILES models will most likely bring more improvement in the accuracy of the well resolved

scales than all the work in the world on the subgrid model of a more coarsely resolved

LES model with the usual filtering procedure that contaminates the long wavelengths.

Satisfying proofs of these statements have not been provided here, but work is underway

to do exactly this.

Even with careful attention to the initial conditions, calibration of the long-term be-

havior of LES models is difficult because fine, medium, and coarse resolution calculations

of what should be a single physical flow will deviate from each other rapidly due to details

of the flow structure which is resolved in one case and not resolved in others. Although

the macroscopic properties and averages -'4 the flow may be perfectly educed from a rel-

atively coarse LES, it turns out to be nearly impossible to prove this because statistical

averages involving only a few percent of the flow energy are generally being sought. Thus,
comparison simulations must be run for a long enough time in a large enough volume on a

statistically stationary problem to ensure that averages over the unavoidable but generally

unimportant phase separations that appear in different cases will have smaller errors than

the phenomena being studied. This usually means that many characteristic times of the

largest scales of the system must be included in the average before statistical errors arising

from this intrinsic variability are smaller than the quantities of interest.

With the recent addition of memory to NRL's 16,000-processor CM and various other

system upgrades, it is now possible to perform calculations with Grids 6 and 7 in the table,

namely computations on the fine 256 x 256 x 256 grid and on an extra fine 512 x 256 x 256

grid. With a full 64K-processor CM, a grid with 512' cells is possible. The computations

for Grid 5 took 18 seconds per timestep on NRL's 16K processor CM using a specially

coded version of the LCPFCT routines provided by R. Whaley [95,96]. Recent system

improvements have obviated some of this optimization so 2563 calculations now take about

80 seconds per timestep. On a full CM, calculation on a 5123 mesh (Grid 8) would take

about 150 seconds per step or about 24 steps per hour when integrating five fluid dyiamic

variables and one extra passive scalar in fully compressible gas dynamics. Full runs of

10,000 steps would therefore take more than 40 hours.
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With additional diagnostics and modified initial conditions, these higher-resolution

grids will be used to continue these investigations of the built-in MILES subgrid behavior.

From the studies reported here and various additional tests performed along the way it is

clear that problems must be chosen where the long wavelengths are continually pumped

to provide a statistically steady base line without the intrinsic decay built into tests such

as reported here and elsewhere. The problems chosen should also make better use of the

available resolution than was done here because of the wasted cells at the edge of the

system and the three essentially identical, replications of the system in the streamwise

direction.

Using a more nearly homogeneous problem will also allow the meaningful use of Fourier

transforms to determine spectra, where specific information about the missing short wave-

lengths can be measured rather than deduced as in the present paper. In addition, diag-

nostics based on the vorticity and on the volume of mixed fluid alone shuuld be used to

augment the information obtained using the volumetric entrainment as defined here. For

our FCT algorithms, the time and space distribution of the unused fluxes of mass, mo-

mentum, and energy should be studied as measures of the unresolved subgrid dynamics.

Differential measures of small scale dynamics should also be made repeatedly by starting

medium and coarse grid simulations from the instantaneous state of a fine grid calculation

and then differencing the results on the coarse grid after a short period of time. This

approach would remove the effects of accumulated phase differences between the differ-

ent resolution calculations at large scales from masking the effects of progressively better

resolved small-scale dyanmics.

Another variation would be to restart a fine-grid MILES run adding a local, relatively

small-scale perturbation to the flow with a known energy and spectral content. This

turbulent patch could then be followed for a short time by differencing the computation

with the original run where the the patch was not added. By diagnosing the action of

the flux-limiter, the cascade of the added energy off the grid could be monitored in time

and space for comparison with expectations based on the dissipation rate of the associated

Kolmogorov spectrum.
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Since MILES methods have not usually been thought of as LES models, there are areas

where extensive interpretation and verification are needed. It has to be demonstrated that

the residual average transport at long wavelength from unresolved subgrid turbulence is

large enough. Almost certainly additional eddy viscosity must be added to the minimal

amount provided by the algorithms. The essentially random and fluctuating components

of the subgrid fields are also missing from these integrated LES models as well as from

other LES models, and should be included. The cell-averaged source terms which drive

these fluctuations are available, however, as they are contained in the components of the

fluxes removed in the nonlinear limiting process. Physical assumptions about the short

timescale temporal behavior (cascade) and spatial characteristics of the unresolved motions

have to be made. All that is known about the subgrid fields during the simulation has to

be inferred from the resolved fields.

Source terms in the LES equations can be included for these subgrid fluctuations

once what is scientifically appropriate has been decided. Research on the subject has

been initiated by Leith [191. This will be a phenomenological model but the goal of

this approach is to require as little as possible in the way of subgrid terms be added

to the underlying monotone algorithm. It appears that such terms should have a local

and random aspect on the macroscale so that resolvable-scale flow instabilities and hence

turbulent structure can be triggered by dynamics on the unresolved scales. This, also.

is easy to do. Different subgrid augmentation algorithms should be tried for FCT once

a baseline convergence behavior corresponding to Figures 1 or 7 is obtained. The goal

of these augmentations would be to add conservative fluctuations of a random nature

to the resolved-field calculations which are based on the unused fluxes identified by the

nonlinear FCT flux-limiter. These augmentations would presumably be able reduce or

eliminate the minimum in the entrainment vs resolution curve, making macroscopically

correct simulations possible at even coarser resolution. Furthermore, these fluctuating

subgrid source terms automatically will lead to additional macroscopic transport because

the monotone flux-limiters will work on these subgrid-determined effects as well as on

the macroscopic effects. In the simulations reported, a stochastic backscatter model, the

subject of recent research elsewhere (19,70], was not included to augment the minimal
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eddy viscosity provided by the monotonicity-preserving flux limiter built into the FCT

algorithm.

Finally, to help understand these LES concepts and the comparisons of different ap-

proaches, an analogy with the flow which results from pouring water onto the center of

a flat table was introduced. While this analogy is certainly not rigorous in any way, it

makes cascade and eventual dissipation of turbulent energy at short wavelength subject to

intuition and visualization.
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Figure 3.a

X-Velocity

Figure 3.b

Y-Velocity

Figure 3.c

Z-Velocity

Figure 3. Cross-Sections from a 256 x 256 x 256 Jet Computation Showing Saturated
Short-Wavelength Modes Superimposed on the Primary Perturbation.
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